Conservation of topology, but not conformation, of the proteolipid proteins of the myelin sheath.

نویسندگان

  • A Gow
  • A Gragerov
  • A Gard
  • D R Colman
  • R A Lazzarini
چکیده

The proteolipid protein gene products DM-20 and PLP are adhesive intrinsic membrane proteins that make up >/=50% of the protein in myelin and serve to stabilize compact myelin sheaths at the extracellular surfaces of apposed membrane lamellae. To identify which domains of DM-20 and PLP are positioned topologically in the extracellular space to participate in adhesion, we engineered N-glycosylation consensus sites into the hydrophilic segments and determined the extent of glycosylation. In addition, we assessed the presence of two translocation stop-transfer signals and, finally, mapped the extracellular and cytoplasmic dispositions of four antibody epitopes. We find that the topologies of DM-20 and PLP are identical, with both proteins possessing four transmembrane domains and N and C termini exposed to the cytoplasm. Consistent with this notion, DM-20 and PLP contain within their N- and C-terminal halves independent stop-transfer signals for insertion into the bilayer of the rough endoplasmic reticulum during de novo synthesis. Surprisingly, the conformation (as opposed to topology) of DM-20 and PLP may differ, which has been inferred from the divergent effects that many missense mutations have on the intracellular trafficking of these two isoforms. The 35 amino acid cytoplasmic peptide in PLP, which distinguishes this protein from DM-20, imparts a sensitivity to mutations in extracellular domains. This peptide may normally function during myelinogenesis to detect conformational changes originating across the bilayer from extracellular PLP interactions in trans and trigger intracellular events such as membrane compaction in the cytoplasmic compartment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Evolution and Coexpression of the Proteolipid Proteins and Protein Zero in Vertebrate Myelin

Vertebrate myelin contains two proteins that mediate compaction: protein zero (P0), an immunoglobulin gene superfamily member, or proteolipid proteins, 4-hydrophobic domain-motif proteins biogenetically unrelated to P0. The prevailing view has been that expression of P0 and proteolipid proteins is mutually exclusive; P0, which mediates myelin compaction in fish, is thought to be completely repl...

متن کامل

Myelin: Delivery by raft

Recent results suggest that membrane proteins are delivered to the myelin sheath of an oligodendrocyte on rafts with a distinctive lipid composition. The major intrinsic membrane protein of myelin, proteolipid protein, interacts with rafts in oligodendrocytes but not with the different rafts found in other cell types.

متن کامل

Myelin under construction—teamwork required

Myelinating glial cells synthesize specialized myelin proteins and deposit them in the growing myelin sheath that enwraps axons multiple times. How do axons and myelinating glial cells coordinate this spectacular cell-cell interaction? In this issue, Trajkovic et al. show that neuronal signaling regulates cell surface expression of the myelin proteolipid protein in cultured oligodendrocytes in ...

متن کامل

Topographical arrangement of membrane proteins in the intact myelin sheath. Lactoperoxidase incorproation of iodine into myelin surface proteins.

The lactoperoxidase-catalyzed iodination technique was utilized to incorporate radioactive iodine into membrane proteins which lie on the outer surface of the myelin sheath. An intact, myelinated nerve bundle, the dorsal column of the cat spinal cord, was employed. The enzymatically iodinated proteins were identified by polyacrylamide gel electrophoresis, and the specific radioactivity was det...

متن کامل

Myelin proteolipid proteins promote the interaction of oligodendrocytes and axons.

Although proteolipid protein (PLP) and its DM20 isoform are the major membrane proteins of CNS myelin, their absence causes surprisingly few developmental defects. In comparison, missense mutations of the X-linked Plp gene cause severe dysmyelination. Previous studies have established roles for PLP/DM20 in the formation of the intraperiod line and in maintaining axonal integrity. We now show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 1  شماره 

صفحات  -

تاریخ انتشار 1997